Polyglot - LLM Basics
Working directly with LLMs
Cookbook
Instructor - Basics
- Basic use
- Basic use via mixin
- Handling errors with `Maybe` helper class
- Modes
- Making some fields optional
- Private vs public object field
- Automatic correction based on validation results
- Using attributes
- Using LLM API connections from config file
- Validation
- Custom validation using Symfony Validator
- Validation across multiple fields
- Validation with LLM
Instructor - Advanced
- Context caching (structured output)
- Customize parameters of LLM driver
- Custom prompts
- Using structured data as an input
- Extracting arguments of function or method
- Streaming partial updates during inference
- Providing example inputs and outputs
- Extracting scalar values
- Extracting sequences of objects
- Streaming
- Structures
Instructor - Troubleshooting
Instructor - LLM API Support
Instructor - Extras
- Extraction of complex objects
- Extraction of complex objects (Anthropic)
- Extraction of complex objects (Cohere)
- Extraction of complex objects (Gemini)
- Image processing - car damage detection
- Image to data (OpenAI)
- Image to data (Anthropic)
- Image to data (Gemini)
- Generating JSON Schema from PHP classes
- Generating JSON Schema dynamically
- Create tasks from meeting transcription
- Translating UI text fields
- Web page to PHP objects
Polyglot - LLM Basics
Polyglot - LLM Advanced
Polyglot - LLM Troubleshooting
Polyglot - LLM API Support
Polyglot - LLM Extras
Prompting - Zero-Shot Prompting
Prompting - Few-Shot Prompting
Prompting - Thought Generation
Prompting - Miscellaneous
- Arbitrary properties
- Consistent values of arbitrary properties
- Chain of Summaries
- Chain of Thought
- Single label classification
- Multiclass classification
- Entity relationship extraction
- Handling errors
- Limiting the length of lists
- Reflection Prompting
- Restating instructions
- Ask LLM to rewrite instructions
- Expanding search queries
- Summary with Keywords
- Reusing components
- Using CoT to improve interpretation of component data
Polyglot - LLM Basics
Working directly with LLMs
Overview
Inference
class offers access to LLM APIs and convenient methods to execute
model inference, incl. chat completions, tool calling or JSON output
generation.
LLM providers access details can be found and modified via
/config/llm.php
.
Example
<?php
require 'examples/boot.php';
use Cognesy\Polyglot\LLM\Inference;
use Cognesy\Utils\Str;
// EXAMPLE 1: simplified API, default connection for convenient ad-hoc calls
$answer = Inference::text('What is capital of Germany');
echo "USER: What is capital of Germany\n";
echo "ASSISTANT: $answer\n";
assert(Str::contains($answer, 'Berlin'));
// EXAMPLE 2: regular API, allows to customize inference options
$answer = (new Inference)
->withConnection('openai') // optional, default is set in /config/llm.php
->create(
messages: [['role' => 'user', 'content' => 'What is capital of France']],
options: ['max_tokens' => 64]
)
->toText();
echo "USER: What is capital of France\n";
echo "ASSISTANT: $answer\n";
assert(Str::contains($answer, 'Paris'));
// EXAMPLE 3: streaming response
$stream = (new Inference)
->create(
messages: [['role' => 'user', 'content' => 'Describe capital of Brasil']],
options: ['max_tokens' => 128, 'stream' => true]
)
->stream()
->responses();
echo "USER: Describe capital of Brasil\n";
echo "ASSISTANT: ";
foreach ($stream as $partial) {
echo $partial->contentDelta;
}
echo "\n";
?>