Cookbook
Cookbook \ Instructor \ Basics
- Basic use
- Basic use via mixin
- Handling errors with `Maybe` helper class
- Modes
- Making some fields optional
- Private vs public object field
- Automatic correction based on validation results
- Using attributes
- Using LLM API connections from config file
- Validation
- Custom validation using Symfony Validator
- Validation across multiple fields
- Validation with LLM
Cookbook \ Instructor \ Advanced
- Context caching (structured output)
- Customize parameters of LLM driver
- Custom prompts
- Customize parameters via DSN
- Using structured data as an input
- Extracting arguments of function or method
- Streaming partial updates during inference
- Providing example inputs and outputs
- Extracting scalar values
- Extracting sequences of objects
- Streaming
- Structures
Cookbook \ Instructor \ Troubleshooting
Cookbook \ Instructor \ LLM API Support
Cookbook \ Instructor \ Extras
- Extraction of complex objects
- Extraction of complex objects (Anthropic)
- Extraction of complex objects (Cohere)
- Extraction of complex objects (Gemini)
- Image processing - car damage detection
- Image to data (OpenAI)
- Image to data (Anthropic)
- Image to data (Gemini)
- Generating JSON Schema from PHP classes
- Generating JSON Schema from PHP classes
- Generating JSON Schema dynamically
- Create tasks from meeting transcription
- Translating UI text fields
- Web page to PHP objects
Cookbook \ Polyglot \ LLM Basics
- Working directly with LLMs
- Working directly with LLMs and JSON - JSON mode
- Working directly with LLMs and JSON - JSON Schema mode
- Working directly with LLMs and JSON - MdJSON mode
- Working directly with LLMs and JSON - Tools mode
- Generating JSON Schema from PHP classes
- Generating JSON Schema from PHP classes
Cookbook \ Polyglot \ LLM Advanced
Cookbook \ Polyglot \ LLM Troubleshooting
Cookbook \ Polyglot \ LLM API Support
Cookbook \ Polyglot \ LLM Extras
Cookbook \ Prompting \ Zero-Shot Prompting
Cookbook \ Prompting \ Few-Shot Prompting
Cookbook \ Prompting \ Thought Generation
Cookbook \ Prompting \ Miscellaneous
- Arbitrary properties
- Consistent values of arbitrary properties
- Chain of Summaries
- Chain of Thought
- Single label classification
- Multiclass classification
- Entity relationship extraction
- Handling errors
- Limiting the length of lists
- Reflection Prompting
- Restating instructions
- Ask LLM to rewrite instructions
- Expanding search queries
- Summary with Keywords
- Reusing components
- Using CoT to improve interpretation of component data
Cookbook \ Instructor \ Advanced
Customize parameters of LLM driver
Overview
You can provide your own LLM configuration instance to Instructor. This is useful when you want to initialize OpenAI client with custom values - e.g. to call other LLMs which support OpenAI API.
Example
<?php
require 'examples/boot.php';
use Cognesy\Instructor\Instructor;
use Cognesy\Polyglot\LLM\Data\LLMConfig;
use Cognesy\Polyglot\LLM\Enums\OutputMode;
use Cognesy\Utils\Env;
class User {
public int $age;
public string $name;
}
// Create instance of LLM client initialized with custom parameters
$config = new LLMConfig(
apiUrl: 'https://api.deepseek.com',
apiKey: Env::get('DEEPSEEK_API_KEY'),
endpoint: '/chat/completions',
model: 'deepseek-chat',
maxTokens: 128,
httpClient: 'guzzle',
providerType: 'openai-compatible',
);
// Get Instructor with the default client component overridden with your own
$instructor = (new Instructor)->withLLMConfig($config);
// Call with custom model and execution mode
$user = $instructor->respond(
messages: "Our user Jason is 25 years old.",
responseModel: User::class,
mode: OutputMode::Tools,
);
dump($user);
assert(isset($user->name));
assert(isset($user->age));
?>
Assistant
Responses are generated using AI and may contain mistakes.