Support for Cerebras API which uses custom hardware for super fast inference. Cerebras provides Llama models.
Mode compatibility:
<?php
require 'examples/boot.php';
use Cognesy\Instructor\StructuredOutput;
use Cognesy\Polyglot\Inference\Enums\OutputMode;
enum UserType : string {
case Guest = 'guest';
case User = 'user';
case Admin = 'admin';
}
class User {
public int $age;
public string $name;
public string $username;
public UserType $role;
/** @var string[] */
public array $hobbies;
}
// Get Instructor with specified LLM client connection
// See: /config/llm.php to check or change LLM client connection configuration details
$structuredOutput = (new StructuredOutput)->using('cerebras');
$user = $structuredOutput->with(
messages: "Jason (@jxnlco) is 25 years old and is the admin of this project. He likes playing football and reading books.",
responseModel: User::class,
model: 'llama3.1-8b', // set your own value/source
mode: OutputMode::Json,
examples: [[
'input' => 'Ive got email Frank - their developer, who\'s 30. His Twitter handle is @frankch. Btw, he plays on drums!',
'output' => ['age' => 30, 'name' => 'Frank', 'username' => '@frankch', 'role' => 'developer', 'hobbies' => ['playing drums'],],
]],
)->get();
print("Completed response model:\n\n");
dump($user);
assert(isset($user->name));
assert(isset($user->role));
assert(isset($user->age));
assert(isset($user->hobbies));
assert(isset($user->username));
assert(is_array($user->hobbies));
assert(count($user->hobbies) > 0);
assert($user->role === UserType::Admin);
assert($user->age === 25);
assert($user->name === 'Jason');
assert(in_array($user->username, ['jxnlco', '@jxnlco']));
?>
Support for Cerebras API which uses custom hardware for super fast inference. Cerebras provides Llama models.
Mode compatibility:
<?php
require 'examples/boot.php';
use Cognesy\Instructor\StructuredOutput;
use Cognesy\Polyglot\Inference\Enums\OutputMode;
enum UserType : string {
case Guest = 'guest';
case User = 'user';
case Admin = 'admin';
}
class User {
public int $age;
public string $name;
public string $username;
public UserType $role;
/** @var string[] */
public array $hobbies;
}
// Get Instructor with specified LLM client connection
// See: /config/llm.php to check or change LLM client connection configuration details
$structuredOutput = (new StructuredOutput)->using('cerebras');
$user = $structuredOutput->with(
messages: "Jason (@jxnlco) is 25 years old and is the admin of this project. He likes playing football and reading books.",
responseModel: User::class,
model: 'llama3.1-8b', // set your own value/source
mode: OutputMode::Json,
examples: [[
'input' => 'Ive got email Frank - their developer, who\'s 30. His Twitter handle is @frankch. Btw, he plays on drums!',
'output' => ['age' => 30, 'name' => 'Frank', 'username' => '@frankch', 'role' => 'developer', 'hobbies' => ['playing drums'],],
]],
)->get();
print("Completed response model:\n\n");
dump($user);
assert(isset($user->name));
assert(isset($user->role));
assert(isset($user->age));
assert(isset($user->hobbies));
assert(isset($user->username));
assert(is_array($user->hobbies));
assert(count($user->hobbies) > 0);
assert($user->role === UserType::Admin);
assert($user->age === 25);
assert($user->name === 'Jason');
assert(in_array($user->username, ['jxnlco', '@jxnlco']));
?>