Cookbook
Cookbook \ Instructor \ Basics
- Basic use
- Specifying required and optional parameters via constructor
- Getters and setters
- Private vs public object field
- Basic use via mixin
- Fluent API
- Handling errors with `Maybe` helper class
- Mixed Type Property
- Modes
- Making some fields optional
- Automatic correction based on validation results
- Using attributes
- Using LLM API connection presets from config file
- Validation
- Custom validation using Symfony Validator
- Validation across multiple fields
- Validation with LLM
Cookbook \ Instructor \ Advanced
- Use custom configuration providers
- Context caching (structured output)
- Customize parameters of LLM driver
- Custom prompts
- Customize parameters via DSN
- Extracting arguments of function or method
- Logging monolog
- Logging psr
- Streaming partial updates during inference
- Providing example inputs and outputs
- Extracting scalar values
- Extracting sequences of objects
- Streaming
- Structures
Cookbook \ Instructor \ Troubleshooting
Cookbook \ Instructor \ LLM API Support
Cookbook \ Instructor \ Extras
- Extraction of complex objects
- Extraction of complex objects (Anthropic)
- Extraction of complex objects (Cohere)
- Extraction of complex objects (Gemini)
- Using structured data as an input
- Image processing - car damage detection
- Image to data (OpenAI)
- Image to data (Anthropic)
- Image to data (Gemini)
- Generating JSON Schema from PHP classes
- Generating JSON Schema from PHP classes
- Generating JSON Schema dynamically
- Create tasks from meeting transcription
- Translating UI text fields
- Web page to PHP objects
Cookbook \ Polyglot \ LLM Basics
- Working directly with LLMs
- Working directly with LLMs and JSON - JSON mode
- Working directly with LLMs and JSON - JSON Schema mode
- Working directly with LLMs and JSON - MdJSON mode
- Working directly with LLMs and JSON - Tools mode
- Generating JSON Schema from PHP classes
- Generating JSON Schema from PHP classes
Cookbook \ Polyglot \ LLM Advanced
Cookbook \ Polyglot \ LLM Troubleshooting
Cookbook \ Polyglot \ LLM API Support
Cookbook \ Polyglot \ LLM Extras
Cookbook \ Prompting \ Zero-Shot Prompting
Cookbook \ Prompting \ Few-Shot Prompting
Cookbook \ Prompting \ Thought Generation
Cookbook \ Prompting \ Miscellaneous
- Arbitrary properties
- Consistent values of arbitrary properties
- Chain of Summaries
- Chain of Thought
- Single label classification
- Multiclass classification
- Entity relationship extraction
- Handling errors
- Limiting the length of lists
- Reflection Prompting
- Restating instructions
- Ask LLM to rewrite instructions
- Expanding search queries
- Summary with Keywords
- Reusing components
- Using CoT to improve interpretation of component data
Cookbook \ Instructor \ Basics
Getters and setters
Overview
Instructor can extract data from the LLM response and use it to instantiate an object via setter methods.
If given property is not public and has no matching constructor params Instructor will use the setter method parameter nullability and default value to determine if property is required.
Example
Copy
<?php
require 'examples/boot.php';
use Cognesy\Instructor\StructuredOutput;
use Cognesy\Schema\Attributes\Description;
class UserWithSetter
{
#[Description('Name of the user or empty string if not provided')]
private string $name;
#[Description('Age of the user or 0 if not provided')]
private ?int $age;
#[Description('Location of the user or empty string if not provided')]
private string $location;
#[Description('Password of the user or empty string if not provided')]
private string $password;
// `name` is required (not nullable parameter), if data exists in the answer the setter will be called, but may have empty value
public function setName(string $name): void {
$this->name = $name ?: 'Jason';
}
public function getName(): string {
return $this->name ?? '';
}
// `age` is optional (nullable parameter), setter will not be called if LLM does not infer the data
public function setAge(int $age): void {
$this->age = (int) $age;
}
public function getAge(): int {
return $this->age ?? 0;
}
public function setLocation(?string $location): void {
$this->location = $location;
}
public function getLocation(): string {
return $this->location;
}
public function setPassword(string|null $password = ''): void {
$this->password = $password ?: '123admin';
}
public function getPassword(): string {
return $this->password;
}
}
$text = <<<TEXT
This user is living in San Francisco. His password is.
TEXT;
$user = (new StructuredOutput)
->using('anthropic')
->withDebugPreset('on')
->withMessages($text)
->withResponseClass(UserWithSetter::class)
->withMaxRetries(2)
//->withModel('claude-3-7-sonnet-20250219')
->get();
dd($user);
//dump((new SchemaFactory)->schema(UserWithSetter::class));
assert($user->getName() === "Jason"); // called - but set to default value as LLM inferred empty name
assert($user->getAge() === 0); // not called - property value not inferred by LLM
assert($user->getPassword() === '123admin'); // called - but set to default value as LLM inferred empty password
assert($user->getLocation() === 'San Francisco'); // called - LLM inferred location from the text
?>
Assistant
Responses are generated using AI and may contain mistakes.