Cookbook
Cookbook \ Instructor \ Basics
- Basic use
- Basic use via mixin
- Handling errors with `Maybe` helper class
- Modes
- Making some fields optional
- Private vs public object field
- Automatic correction based on validation results
- Using attributes
- Using LLM API connections from config file
- Validation
- Custom validation using Symfony Validator
- Validation across multiple fields
- Validation with LLM
Cookbook \ Instructor \ Advanced
- Context caching (structured output)
- Customize parameters of LLM driver
- Custom prompts
- Customize parameters via DSN
- Using structured data as an input
- Extracting arguments of function or method
- Streaming partial updates during inference
- Providing example inputs and outputs
- Extracting scalar values
- Extracting sequences of objects
- Streaming
- Structures
Cookbook \ Instructor \ Troubleshooting
Cookbook \ Instructor \ LLM API Support
Cookbook \ Instructor \ Extras
- Extraction of complex objects
- Extraction of complex objects (Anthropic)
- Extraction of complex objects (Cohere)
- Extraction of complex objects (Gemini)
- Image processing - car damage detection
- Image to data (OpenAI)
- Image to data (Anthropic)
- Image to data (Gemini)
- Generating JSON Schema from PHP classes
- Generating JSON Schema from PHP classes
- Generating JSON Schema dynamically
- Create tasks from meeting transcription
- Translating UI text fields
- Web page to PHP objects
Cookbook \ Polyglot \ LLM Basics
- Working directly with LLMs
- Working directly with LLMs and JSON - JSON mode
- Working directly with LLMs and JSON - JSON Schema mode
- Working directly with LLMs and JSON - MdJSON mode
- Working directly with LLMs and JSON - Tools mode
- Generating JSON Schema from PHP classes
- Generating JSON Schema from PHP classes
Cookbook \ Polyglot \ LLM Advanced
Cookbook \ Polyglot \ LLM Troubleshooting
Cookbook \ Polyglot \ LLM API Support
Cookbook \ Polyglot \ LLM Extras
Cookbook \ Prompting \ Zero-Shot Prompting
Cookbook \ Prompting \ Few-Shot Prompting
Cookbook \ Prompting \ Thought Generation
Cookbook \ Prompting \ Miscellaneous
- Arbitrary properties
- Consistent values of arbitrary properties
- Chain of Summaries
- Chain of Thought
- Single label classification
- Multiclass classification
- Entity relationship extraction
- Handling errors
- Limiting the length of lists
- Reflection Prompting
- Restating instructions
- Ask LLM to rewrite instructions
- Expanding search queries
- Summary with Keywords
- Reusing components
- Using CoT to improve interpretation of component data
Cookbook \ Instructor \ Extras
Image processing - car damage detection
Overview
This is an example of how to extract structured data from an image using Instructor. The image is loaded from a file and converted to base64 format before sending it to OpenAI API.
In this example we will be extracting structured data from an image of a car with visible damage. The response model will contain information about the location of the damage and the type of damage.
Scanned image
Here’s the image we’re going to extract data from.
Example
<?php
require 'examples/boot.php';
use Cognesy\Addons\Image\Image;
use Cognesy\Instructor\Features\Schema\Attributes\Description;
use Cognesy\Utils\Str;
enum DamageSeverity : string {
case Minor = 'minor';
case Moderate = 'moderate';
case Severe = 'severe';
case Total = 'total';
}
enum DamageLocation : string {
case Front = 'front';
case Rear = 'rear';
case Left = 'left';
case Right = 'right';
case Top = 'top';
case Bottom = 'bottom';
}
class Damage {
#[Description('Identify damaged element')]
public string $element;
/** @var DamageLocation[] */
public array $locations;
public DamageSeverity $severity;
public string $description;
}
class DamageAssessment {
public string $make;
public string $model;
public string $bodyColor;
/** @var Damage[] */
public array $damages = [];
public string $summary;
}
$assessment = Image::fromFile(__DIR__ . '/car-damage.jpg')
->toData(
responseModel: DamageAssessment::class,
prompt: 'Identify and assess each car damage location and severity separately.',
connection: 'openai',
model: 'gpt-4o',
options: ['max_tokens' => 4096]
);
dump($assessment);
assert(Str::contains($assessment->make, 'Toyota', false));
assert(Str::contains($assessment->model, 'Prius', false));
assert(Str::contains($assessment->bodyColor, 'white', false));
assert(count($assessment->damages) > 0);
?>
On this page
Assistant
Responses are generated using AI and may contain mistakes.