Cookbook
Cookbook \ Instructor \ Basics
- Basic use
- Basic use via mixin
- Handling errors with `Maybe` helper class
- Modes
- Making some fields optional
- Private vs public object field
- Automatic correction based on validation results
- Using attributes
- Using LLM API connections from config file
- Validation
- Custom validation using Symfony Validator
- Validation across multiple fields
- Validation with LLM
Cookbook \ Instructor \ Advanced
- Context caching (structured output)
- Customize parameters of LLM driver
- Custom prompts
- Customize parameters via DSN
- Using structured data as an input
- Extracting arguments of function or method
- Streaming partial updates during inference
- Providing example inputs and outputs
- Extracting scalar values
- Extracting sequences of objects
- Streaming
- Structures
Cookbook \ Instructor \ Troubleshooting
Cookbook \ Instructor \ LLM API Support
Cookbook \ Instructor \ Extras
- Extraction of complex objects
- Extraction of complex objects (Anthropic)
- Extraction of complex objects (Cohere)
- Extraction of complex objects (Gemini)
- Image processing - car damage detection
- Image to data (OpenAI)
- Image to data (Anthropic)
- Image to data (Gemini)
- Generating JSON Schema from PHP classes
- Generating JSON Schema from PHP classes
- Generating JSON Schema dynamically
- Create tasks from meeting transcription
- Translating UI text fields
- Web page to PHP objects
Cookbook \ Polyglot \ LLM Basics
- Working directly with LLMs
- Working directly with LLMs and JSON - JSON mode
- Working directly with LLMs and JSON - JSON Schema mode
- Working directly with LLMs and JSON - MdJSON mode
- Working directly with LLMs and JSON - Tools mode
- Generating JSON Schema from PHP classes
- Generating JSON Schema from PHP classes
Cookbook \ Polyglot \ LLM Advanced
Cookbook \ Polyglot \ LLM Troubleshooting
Cookbook \ Polyglot \ LLM API Support
Cookbook \ Polyglot \ LLM Extras
Cookbook \ Prompting \ Zero-Shot Prompting
Cookbook \ Prompting \ Few-Shot Prompting
Cookbook \ Prompting \ Thought Generation
Cookbook \ Prompting \ Miscellaneous
- Arbitrary properties
- Consistent values of arbitrary properties
- Chain of Summaries
- Chain of Thought
- Single label classification
- Multiclass classification
- Entity relationship extraction
- Handling errors
- Limiting the length of lists
- Reflection Prompting
- Restating instructions
- Ask LLM to rewrite instructions
- Expanding search queries
- Summary with Keywords
- Reusing components
- Using CoT to improve interpretation of component data
Cookbook \ Polyglot \ LLM Basics
Generating JSON Schema from PHP classes
Overview
Polyglot has a built-in support for dynamically constructing JSON Schema using
JsonSchema
class. It is useful when you want to shape the structures during
runtime.
Example
<?php
require 'examples/boot.php';
use Cognesy\Polyglot\LLM\Enums\OutputMode;
use Cognesy\Polyglot\LLM\Inference;
use Cognesy\Utils\JsonSchema\JsonSchema;
$schema = JsonSchema::object(
properties: [
JsonSchema::string('name', 'City name'),
JsonSchema::integer('population', 'City population'),
JsonSchema::integer('founded', 'Founding year'),
],
requiredProperties: ['name', 'population', 'founded'],
);
$data = (new Inference)
->withConnection('openai')
->create(
messages: [
['role' => 'user', 'content' => 'What is capital of France? Respond with JSON data.']
],
responseFormat: [
'type' => 'json_schema',
'description' => 'City data',
'json_schema' => [
'name' => 'city_data',
'schema' => $schema->toJsonSchema(),
'strict' => true,
],
],
options: ['max_tokens' => 64],
mode: OutputMode::JsonSchema,
)
->toJson();
echo "USER: What is capital of France\n";
echo "ASSISTANT:\n";
dump($data);
assert(is_array($data));
assert(is_string($data['name']));
assert(is_int($data['population']));
assert(is_int($data['founded']));
?>
Assistant
Responses are generated using AI and may contain mistakes.