Advanced
Customize parameters of LLM driver
Basics
- Basic use
- Basic use via mixin
- Handling errors with `Maybe` helper class
- Modes
- Making some fields optional
- Private vs public object field
- Automatic correction based on validation results
- Using attributes
- Using LLM API connections from config file
- Validation
- Custom validation using Symfony Validator
- Validation across multiple fields
Advanced
- Context caching (text inference)
- Context caching (structured output)
- Customize parameters of LLM driver
- Custom prompts
- Using structured data as an input
- Extracting arguments of function or method
- Streaming partial updates during inference
- Providing example inputs and outputs
- Extracting scalar values
- Extracting sequences of objects
- Streaming
- Structures
Troubleshooting
LLM API Support
Extras
- Extraction of complex objects
- Extraction of complex objects (Anthropic)
- Extraction of complex objects (Cohere)
- Extraction of complex objects (Gemini)
- Embeddings
- Image processing - car damage detection
- Image to data (OpenAI)
- Image to data (Anthropic)
- Image to data (Gemini)
- Working directly with LLMs
- Working directly with LLMs and JSON - JSON mode
- Working directly with LLMs and JSON - JSON Schema mode
- Working directly with LLMs and JSON - MdJSON mode
- Working directly with LLMs and JSON - Tools mode
- Prompts
- Generating JSON Schema from PHP classes
- Generating JSON Schema dynamically
- Simple content summary
- Inference and tool use
- Create tasks from meeting transcription
- Translating UI text fields
- Web page to PHP objects
Advanced
Customize parameters of LLM driver
Overview
You can provide your own LLM configuration instance to Instructor. This is useful when you want to initialize OpenAI client with custom values - e.g. to call other LLMs which support OpenAI API.
Example
<?php
$loader = require 'vendor/autoload.php';
$loader->add('Cognesy\\Instructor\\', __DIR__ . '../../src/');
use Cognesy\Instructor\Enums\Mode;
use Cognesy\Instructor\Features\LLM\Data\LLMConfig;
use Cognesy\Instructor\Features\LLM\Enums\LLMProviderType;
use Cognesy\Instructor\Instructor;
use Cognesy\Instructor\Utils\Env;
class User {
public int $age;
public string $name;
}
// Create instance of LLM client initialized with custom parameters
$config = new LLMConfig(
apiUrl: 'https://api.together.xyz/v1',
apiKey: Env::get('TOGETHER_API_KEY'),
endpoint: '/chat/completions',
model: 'mistralai/Mixtral-8x7B-Instruct-v0.1',
maxTokens: 128,
httpClient: 'guzzle',
providerType: LLMProviderType::OpenAICompatible,
);
// Get Instructor with the default client component overridden with your own
$instructor = (new Instructor)->withLLMConfig($config);
// Call with custom model and execution mode
$user = $instructor->respond(
messages: "Our user Jason is 25 years old.",
responseModel: User::class,
mode: Mode::Tools,
);
dump($user);
assert(isset($user->name));
assert(isset($user->age));
?>