Basics
Using attributes
Basics
- Basic use
- Basic use via mixin
- Handling errors with `Maybe` helper class
- Modes
- Making some fields optional
- Private vs public object field
- Automatic correction based on validation results
- Using attributes
- Using LLM API connections from config file
- Validation
- Custom validation using Symfony Validator
- Validation across multiple fields
Advanced
- Context caching
- Context caching (Anthropic)
- Customize parameters of OpenAI client
- Custom prompts
- Using structured data as an input
- Extracting arguments of function or method
- Streaming partial updates during inference
- Providing example inputs and outputs
- Extracting scalar values
- Extracting sequences of objects
- Streaming
- Structures
Troubleshooting
LLM API Support
Extras
- Extraction of complex objects
- Extraction of complex objects (Anthropic)
- Extraction of complex objects (Cohere)
- Extraction of complex objects (Gemini)
- Embeddings
- Image processing - car damage detection
- Image to data (OpenAI)
- Image to data (Anthropic)
- Image to data (Gemini)
- Working directly with LLMs
- Working directly with LLMs and JSON - JSON mode
- Working directly with LLMs and JSON - JSON Schema mode
- Working directly with LLMs and JSON - MdJSON mode
- Inference and tool use
- Working directly with LLMs and JSON - Tools mode
- Prompts
- Generating JSON Schema from PHP classes
- Generating JSON Schema dynamically
- Simple content summary
- Create tasks from meeting transcription
- Translating UI text fields
- Web page to PHP objects
Basics
Using attributes
Overview
Instructor supports Description
and Instructions
attributes to provide more
context to the language model or to provide additional instructions to the model.
Example
<?php
$loader = require 'vendor/autoload.php';
$loader->add('Cognesy\\Instructor\\', __DIR__ . '../../src/');
use Cognesy\Instructor\Features\Schema\Attributes\Description;
use Cognesy\Instructor\Features\Schema\Attributes\Instructions;
use Cognesy\Instructor\Instructor;
// Step 1: Define a class that represents the structure and semantics
// of the data you want to extract
#[Description("Information about user")]
class User {
#[Description("User's age")]
public int $age;
#[Instructions("Make user name ALL CAPS")]
public string $name;
#[Description("User's job")]
#[Instructions("Ignore hobbies, identify profession")]
#[Instructions("Make the profession name lowercase")]
public string $job;
}
// Step 2: Get the text (or chat messages) you want to extract data from
$text = "Jason is 25 years old, 10K runner, speaker and an engineer.";
print("Input text:\n");
print($text . "\n\n");
// Step 3: Extract structured data using default language model API (OpenAI)
print("Extracting structured data using LLM...\n\n");
$user = (new Instructor)->respond(
messages: $text,
responseModel: User::class,
);
// Step 4: Now you can use the extracted data in your application
print("Extracted data:\n");
dump($user);
assert(isset($user->name));
assert($user->name === "JASON");
assert(isset($user->age));
assert($user->age === 25);
assert(isset($user->job));
assert($user->job === "engineer");
?>